科目: 來源: 題型:
【題目】“”是“對任意的正數
,
”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據基本不等式,我們可以判斷出“”?“對任意的正數x,2x+
≥1”與“對任意的正數x,2x+
≥1”?“a=
”真假,進而根據充要條件的定義,即可得到結論.
解答:解:當“a=”時,由基本不等式可得:
“對任意的正數x,2x+≥1”一定成立,
即“a=”?“對任意的正數x,2x+
≥1”為真命題;
而“對任意的正數x,2x+≥1的”時,可得“a≥
”
即“對任意的正數x,2x+≥1”?“a=
”為假命題;
故“a=”是“對任意的正數x,2x+
≥1的”充分不必要條件
故選A
【題型】單選題
【結束】
9
【題目】如圖是一幾何體的平面展開圖,其中為正方形,
,
分別為
,
的中點,在此幾何體中,給出下面四個結論:①直線
與直線
異面;②直線
與直線
異面;③直線
平面
;④平面
平面
.
其中一定正確的選項是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為
,摩天輪做勻速轉動,每
轉一圈,摩天輪上的點
的起始位置在最低點處.
(1)已知在時刻時
距離地面的高度
,(其中
),求
時
距離地面的高度;
(2)當離地面以上時,可以看到公園的全貌,求轉一圈中有多少時間可以看到公園的全貌?
查看答案和解析>>
科目: 來源: 題型:
【題目】學校從參加高一年級期中考試的學生中抽出名學生,并統計了她們的數學成績(成績均為整數且滿分為
分),數學成績分組及各組頻數如下:
樣本頻率分布表:
分組 | 頻數 | 頻率 |
合計 |
(1)在給出的樣本頻率分布表中,求的值;
(2)估計成績在分以上(含
分)學生的比例;
(3)為了幫助成績差的學生提高數學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在
中的某一位同學.已知甲同學的成績為
分,乙同學的成績為
分,求甲、乙兩同學恰好被安排在同一小組的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓的兩個焦點分別為,
,過
作橢圓長軸的垂線交橢圓于點
,若
為等腰直角三角形,則橢圓的離心率是( )
A. B.
C.
D.
【答案】C
【解析】試題分析:解:設點P在x軸上方,坐標為(),∵
為等腰直角三角形,∴|PF2|=|F1F2|,
,故選D.
考點:橢圓的簡單性質
點評:本題主要考查了橢圓的簡單性質.橢圓的離心率是高考中選擇填空題?嫉念}目.應熟練掌握圓錐曲線中a,b,c和e的關系
【題型】單選題
【結束】
8
【題目】“”是“對任意的正數
,
”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓,直線
。
(Ⅰ)求證:直線與圓C恒有兩個交點;
(Ⅱ)求出直線被圓C截得的最短弦長,并求出截得最短弦長時的
的值;
(Ⅲ)設直線與圓C的兩個交點為M,N,且
(點C為圓C的圓心),求直線
的方程。
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司近年來科研費用支出萬元與公司所獲利潤
萬元之間有如表的統計
數據:參考公式:用最小二乘法求出關于
的線性回歸方程為:
,
其中: ,
,參考數值:
。
(Ⅰ)求出;
(Ⅱ)根據上表提供的數據可知公司所獲利潤萬元與科研費用支出
萬元線性相關,請用最小二乘法求出
關于
的線性回歸方程
;
(Ⅲ)試根據(Ⅱ)求出的線性回歸方程,預測該公司科研費用支出為10萬元時公司所獲得的利潤。
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業生產甲乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸;生產每噸乙產品要用A原料1噸,B原料3噸,銷售每噸甲產品可獲得利潤5萬元,銷售每噸乙產品可獲得利潤3萬元。該企業在一個生產周期消耗A原料不超過13噸,B原料不超過18噸。問該企業如何安排可獲得最大利潤,最大利潤是多少?
查看答案和解析>>